Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.29.22282857

ABSTRACT

Introduction COVID-19 causes global health and psychosocial devastation, particularly to high-risk patients such as those with neuromuscular diseases (NMDs). The mRNA-based BNT162b2 and inactivated whole-virus CoronaVac are two novel COVID-19 vaccines widely used across the world that confer immune protection to healthy individuals. However, hesitancy towards COVID-19 vaccination was common for patients with NMDs early in the pandemic due to the paucity of data on the safety and efficacy in this specific patient population. Therefore, we examined the underlying factors associated with vaccine hesitancy across time for these patients and included the assessment of the reactogenicity and immunogenicity of these two vaccines. Methods Pediatric patients were screened from our NMD registry. For the vaccine hesitancy arm, those aged 8-18 years with no cognitive delay were invited to complete surveys in January and April 2022. For the reactogenicity and immunogenicity arm, patients aged 2-21 years were enrolled for COVID-19 vaccination between June 2021 to April 2022. Participants recorded adverse reactions (ARs) for 7 days after vaccination. Peripheral blood was obtained before BNT162b2 or CoronaVac and within 49 days after vaccination to measure their serological antibody responses as compared to healthy children and adolescents. Results Forty-one patients completed vaccine hesitancy surveys for both timepoints, and 22 joined our reactogenicity and immunogenicity arm of the study. Two or more family members vaccinated against COVID-19 was positively associated with intention of vaccination (odds ratio 11.7, 95% CI 1.81-75.1, p=0.010). Pain at the injection site, fatigue and myalgia were the commonest ARs. Most ARs were mild (75.5%, n=71/94). All 19 patients seroconverted against the wildtype SARS-CoV-2 after two doses of BNT162b2 or CoronaVac, although there was lower neutralization against the Omicron BA.1 variant. Discussion This study demonstrated vaccine hesitancy amongst patients with NMDs was influenced by family members and changed across time. BNT162b2 and CoronaVac were safe and immunogenic even for patients on low-dose corticosteroids. Future research is required to assess the durability of the COVID-19 vaccines, the effectiveness of booster doses and other routes of administration against emerging SARS-CoV-2 variants for these patients.


Subject(s)
Pain , Neuromuscular Diseases , Myalgia , COVID-19 , Fatigue
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.14.22279916

ABSTRACT

Background: Patients with kidney diseases are at risk of severe complications from COVID-19, yet little is known about the effectiveness of COVID-19 vaccines in children and adolescents with kidney diseases. Methods: We investigated the immunogenicity and safety of an accelerated, 3-dose primary series of COVID-19 vaccines among 64 pediatric chronic kidney disease patients (mean age 12.2; 32 male) with or without immunosuppression, dialysis, or kidney transplant. CoronaVac was given to those aged <5 years, 0.1ml BNT162b2 to those aged 5-11 years, and 0.3ml BNT162b2 to those aged 11-18 years. Results: Antibody responses including S-RBD IgG (90.9-100% seropositive) and surrogate virus neutralization (geometric mean sVNT% level, 78.6-94.0%) were significantly elicited by 3 doses of any vaccine. T cell responses were also elicited. Weaker neutralization responses were observed among kidney transplant recipients and non-dialysis children receiving rituximab for glomerular diseases. Neutralization was reduced against Omicron BA.1 compared to wild-type (post-dose 3 sVNT% level; 84% vs 27.2%; p<0.0001). However, T cell response against Omicron BA.1 was preserved, which likely confer protection against severe COVID-19. Hybrid immunity was observed after vaccination in infected patients, as evidenced by higher Omicron BA.1 neutralization response among infected patients receiving 2 doses than those uninfected. Generally mild or moderate adverse reactions following vaccines were reported. Conclusions: Our findings support that an accelerated 3-dose primary series with CoronaVac and BNT162b2 is safe and immunogenic in young children and adolescents with kidney diseases.


Subject(s)
Infections , Kidney Diseases , COVID-19 , Renal Insufficiency, Chronic
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.09.22279426

ABSTRACT

Background: Vaccine effectiveness (VE) of BNT162b2 and CoronaVac against COVID-19-associated hospitalization and moderate-to-severe disease due to SARS-CoV-2 Omicron BA.2 for pediatric populations that had low exposure to prior SARS-CoV-2 variants needs to be further clarified. This can be studied from the 1.36 million vaccine doses had been administered to 766,601 of 953,400 children and adolescents in Hong Kong (HK) since March 2021 to April 2022. Methods: Using an ecological design leveraging the HK vaccination coverage statistics and public hospital records, this study investigated the VE for children aged 3-11 years and adolescents aged 12-18 years at the population level during the Omicron BA.2 wave from January to April 2022. Findings: VE against COVID-19-associated hospitalization for children was 65.3% for 1 dose of BNT162b2 and 13.0% and 86.1% for 1 and 2 doses of CoronaVac, respectively. For adolescents, VE against COVID-19-associated hospitalization was 60.2% and 82.4% after 1 and 2 doses of BNT162b2 and 30.8% and 90.7% after 1 and 2 doses of CoronaVac, respectively. Protection against moderate-to-severe disease for aged 3-18 was high, with VE of 93.1% and 95.8% after 2 doses of BNT162b2 and CoronaVac, respectively. No COVID-19-associated hospitalization or moderate-to-severe disease occurred for 68,565 children and adolescents who received their third dose. Estimated hospitalizations of children and adolescents averted by vaccination were 68 and 999, respectively, and were 45 and 147 for moderate-to-severe cases. Conclusions: BNT162b2 or CoronaVac provide substantial protection from COVID-19-associated hospitalization and moderate-to-severe disease due to a SARS-CoV-2 variant of concern. Funding: The Providence Foundation.


Subject(s)
COVID-19
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1961385.v1

ABSTRACT

High effectiveness of the third dose of BNT162b2 in healthy adolescents against Omicron BA.1 has been reported, but immune responses conferring this protection are not yet elucidated. In this analysis, our study (NCT04800133) aims to evaluate the humoral and cellular responses against wild-type and Omicron (BA.1, BA.2 and/or BA.5) SARS-CoV-2 before and after a third dose of BNT162b2 in healthy adolescents. At 6 months after 2 doses, S IgG, S IgG Fc receptor-binding, S-RBD IgG and neutralizing antibody responses waned significantly, yet neutralizing antibodies remained detectable in all tested adolescents and S IgG avidity increased from 1 month after 2 doses. The antibody responses and S-specific IFN-γ+ and IL-2+ CD8+ T cell responses were significantly boosted in healthy adolescents after a homologous third dose of BNT162b2. Compared to adults, humoral responses for the third dose were non-inferior or superior in adolescents. The S-specific IFN-γ+ and IL-2+ CD4+ and CD8+ T cell responses in adolescents and adults were comparable. Interestingly, after 3 doses, adolescents had preserved S IgG, S IgG avidity, S IgG FcγRIIIa-binding, and PRNT50 against Omicron BA.2, as well as preserved cellular responses against BA.1 S. Sera from 100% and 96% of adolescents tested at 1 and 6 months after 2 doses could also neutralize BA.1. Based on PRNT50, we predict 92%, 89% and 68% effectiveness against COVID-19 with WT, BA.2 and BA.5 1 month after 3 doses. Our study found high antibody and T cell responses, including potent cross-variant reactivity, after 3 doses of BNT162b2 vaccine in adolescents in its current formulation, suggesting that current vaccines can be protective against symptomatic Omicron disease.


Subject(s)
COVID-19
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1856540.v1

ABSTRACT

The SARS-CoV-2 Omicron BA.2 subvariant replaced BA.1 globally in early 2022, and caused an unprecedented tsunami of cases in Hong Kong, resulting in the collapse of elimination strategy. Vaccine effectiveness (VE) of BNT162b2 and CoronaVac against BA.2 is unclear. We utilize an ecological design incorporating population-level vaccine coverage statistics and territory-wide case-level SARS-CoV-2 infection surveillance data, and investigate the VE against infection during the Omicron BA.2 wave between January 1 to April 19, 2022, in Hong Kong for children and adolescents. We estimate VE to be 33.0% for 1 dose of BNT162b2 in children aged 5–11 and 40.8% for 2 doses of CoronaVac in children aged 3–11. We also estimate 54.9% and 86.8% VE for 2 and 3 doses of BNT162b2, and 55.0% and 92.0% VE for 2 and 3 doses of CoronaVac in adolescents aged 12–18. Our findings support preserved VE against infection by variants of concerns for children and adolescents in settings with extremely low levels of prior SARS-CoV-2 circulation.


Subject(s)
COVID-19
6.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.165629347.75546543.v1

ABSTRACT

Background: Safety and immunogenicity of 3 doses of BNT162b2 and CoronaVac in adult and pediatric patients with inborn errors of immunity (IEIs) remain unknown. Intradermal vaccination may improve immunogenicity in immunocompromised patients. Our study (NCT04800133) aimed to determine the safety and immunogenicity in patients with IEIs receiving a 3-dose primary series of mRNA vaccine BNT162b2 (age 12+) or inactivated whole-virion vaccine CoronaVac (age 3+) in Hong Kong, including Omicron BA.1 neutralization, in a nonrandomized manner. Intradermal vaccination was also studied. Methods Thirty-nine patients were vaccinated, including 16 with homologous intramuscular 0.3ml BNT162b2 and 17 with homologous intramuscular 0.5ml CoronaVac. Two patients received 3 doses of intradermal 0.5ml CoronaVac, and 4 patients received 2 doses of intramuscular BNT162b2 and the third dose with intradermal BNT162b2. Adverse reactions and adverse events were tracked for 7 and 28 days after each dose. Antibody responses assessed included binding IgG antibody to wild-type (WT) spike receptor-binding domain (S-RBD IgG) and surrogate neutralization activity to WT and BA.1 viruses. T cell responses were examined by intracellular cytokine staining following stimulation with SARS-CoV-2 peptide pool(s). Results No safety concerns were identified. Inadequate antibody responses were found after 2 doses in patients with humoral immunodeficiencies and especially so against BA.1. Dose 3 of either vaccine increased S-RBD IgG response. T cell responses against SARS-CoV-2 antigens were detected in vaccinated IEI patients. Intradermal third dose vaccine led to high antibody response in 4 patients. Conclusions The primary vaccination series of BNT162b2 and CoronaVac in adults and children with IEIs should include 3 doses for optimal immunogenicity.


Subject(s)
Immunologic Deficiency Syndromes , Metabolism, Inborn Errors
8.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1327020.v1

ABSTRACT

For SARS-CoV-2 vaccines, efficacy data for BNT162b2 but not CoronaVac are available in adolescents. Phase II/III studies focused on neutralizing antibody responses in adolescents, neglecting binding antibody and cellular responses that are also important against SARS-CoV-2. Therefore, we conducted a registered clinical study (NCT04800133) to establish immunobridging with various antibody and cellular immunity markers and to compare the immunogenicity and reactogenicity of these 2 vaccines in healthy adolescents. One-dose BNT162b2 outcomes were also assessed since it had been recommended in some localities due to the risk of myocarditis. Antibodies and T cell immune responses were non-inferior or similar in adolescents receiving 2 doses of BNT162b2 (BB, N=116) and CoronaVac (CC, N=123) versus adults after 2 doses of the same vaccine (BB, N=147; CC, N=141) but not in adolescents after 1 dose of BNT162b2 (B, N=116). CC induced SARS-CoV-2 nucleocapsid (N) and N C-terminal domain seroconversion in more adolescents than adults. Adverse reactions were mostly mild for both vaccines and more frequent for BNT162b2. We confirmed higher S, neutralizing, avidity and Fc receptor-binding antibody responses in adolescents receiving BB than CC. This is the first study to show similar induction of strong S-specific T cells by the 2 vaccines, in addition to N- and M-specific T cells induced by CoronaVac but not BNT162b2 in adolescents. The implications of the differential ability to induce S- and non-S-specific antibody and T cell responses on the durability of protection and protection against virus variants by BNT162b2 and CoronaVac, the 2 most used SARS-CoV-2 vaccines in the world, should be further investigated. Our results support the use of both vaccines in adolescents.


Subject(s)
Myocarditis
9.
Jeremy Manry; Paul Bastard; Adrian Gervais; Tom Le Voyer; Jérémie Rosain; Quentin Philippot; Eleftherios Michailidis; Hans-Heinrich Hoffmann; Shohei Eto; Marina Garcia-Prat; Lucy Bizien; Alba Parra-Martínez; Rui Yang; Liis Haljasmägi; Mélanie Migaud; Karita Särekannu; Julia Maslovskaja; Nicolas de Prost; Yacine Tandjaoui-Lambiotte; Charles-Edouard Luyt; Blanca Amador-Borrero; Alexandre Gaudet; Julien Poissy; Pascal Morel; Pascale Richard; Fabrice Cognasse; Jesus Troya; Sophie Trouillet-Assant; Alexandre Belot; Kahina Saker; Pierre Garçon; Jacques Rivière; Jean-Christophe Lagier; Stéphanie Gentile; Lindsey Rosen; Elana Shaw; Tomohiro Morio; Junko Tanaka; David Dalmau; Pierre-Louis Tharaux; Damien Sene; Alain Stepanian; Bruno Mégarbane; Vasiliki Triantafyllia; Arnaud Fekkar; James Heath; Jose Franco; Juan-Manuel Anaya; Jordi Solé-Violán; Luisa Imberti; Andrea Biondi; Paolo Bonfanti; Riccardo Castagnoli; Ottavia Delmonte; Yu Zhang; Andrew Snow; Steve Holland; Catherine Biggs; Marcela Moncada-Vélez; Andrés Arias; Lazaro Lorenzo; Soraya Boucherit; Dany Anglicheau; Anna Planas; Filomeen Haerynck; Sotirija Duvlis; Robert Nussbaum; Tayfun Ozcelik; Sevgi Keles; Aziz Bousfiha; Jalila El Bakkouri; Carolina Ramirez-Santana; Stéphane Paul; Qiang Pan-Hammarstrom; Lennart Hammarstrom; Annabelle Dupont; Alina Kurolap; Christine Metz; Alessandro Aiuti; Giorgio Casari; Vito Lampasona; Fabio Ciceri; Lucila Barreiros; Elena Dominguez-Garrido; Mateus Vidigal; Mayana Zatz; Diederik van de Beek; Sabina Sahanic; Ivan Tancevski; Yurii Stepanovskyy; Oksana Boyarchuk; Yoko Nukui; Miyuki Tsumura; Loreto Vidaur; Stuart Tangye; Sonia Burrel; Darragh Duffy; Lluis Quintana-Murci; Adam Klocperk; Nelli Kann; Anna Shcherbina; Yu-Lung Lau; Daniel Leung; Matthieu Coulongeat; Julien Marlet; Rutger Koning; Luis Reyes; Angélique Chauvineau-Grenier; Fabienne Venet; guillaume monneret; Michel Nussenzweig; Romain Arrestier; Idris Boudhabhay; Hagit Baris-Feldman; David Hagin; Joost Wauters; Isabelle Meyts; Adam Dyer; Sean Kennelly; Nollaig Bourke; Rabih Halwani; Fatemeh Sharif-Askari; Karim Dorgham; Jérôme Sallette; Souad Mehlal-Sedkaoui; Suzan AlKhater; Raúl Rigo-Bonnin; Francisco Morandeira; Lucie Roussel; Donald Vinh; Christian Erikstrup; Antonio Condino-Neto; Carolina Prando; Anastasiia Bondarenko; András Spaan; Laurent Gilardin; Jacques Fellay; Stanislas Lyonnet; Kaya Bilguvar; Richard Lifton; Shrikant Mane; Mark Anderson; Bertrand Boisson; Vivien Béziat; Shen-Ying Zhang; Evangelos Andreakos; Olivier Hermine; Aurora Pujol; Pärt Peterson; Trine Hyrup Mogensen; Lee Rowen; James Mond; Stéphanie Debette; Xavier deLamballerie; Charles Burdet; Lila Bouadma; Marie Zins; Pere Soler-Palacin; Roger Colobran; Guy Gorochov; Xavier Solanich; Sophie Susen; Javier Martinez-Picado; Didier Raoult; Marc Vasse; Peter Gregersen; Carlos Rodríguez-Gallego; Lorenzo Piemonti; Luigi Notarangelo; Helen Su; Kai Kisand; Satoshi Okada; Anne Puel; Emmanuelle Jouanguy; Charles Rice; Pierre Tiberghien; Qian Zhang; Jean-Laurent Casanova; Laurent Abel; Aurélie Cobat.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1225906.v1

ABSTRACT

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.


Subject(s)
COVID-19
10.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-927070.v1

ABSTRACT

Genomic surveillance has shaped our understanding of SARS-CoV-2 variants, which have proliferated globally in 2021.We collected country-specific data on SARS-CoV-2 genomic surveillance, sequencing capabilities, public genomic data from multiple public repositories, and aggregated publicly available variant data. Then, different proxies were used to estimate the sequencing coverage and public availability extent of genomic data, in addition to describing the global dissemination of variants. We found that the COVID-19 global epidemic clearly featured increasing circulation of Alpha since the start of 2021, which was rapidly replaced by the Delta variant starting around May 2021. SARS-CoV-2 genomic surveillance and sequencing availability varied markedly across countries, with 63 countries performing routine genomic surveillance and 79 countries with high availability of SARS-CoV-2 sequencing. We also observed a marked heterogeneity of sequenced coverage across regions and countries. Across different variants, 21-46% of countries with explicit reporting on variants shared less than half of their variant sequences in public repositories. Our findings indicated an urgent need to expand sequencing capacity of virus isolates, enhance the sharing of sequences, the standardization of metadata files, and supportive networks for countries with no sequencing capability.


Subject(s)
COVID-19
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.06.21261175

ABSTRACT

Serosurveillance is an important epidemiologic tool for SARS-CoV-2, used to estimate burden of disease and degree of population immunity. Which antibody biomarker, and the optimal number of biomarkers, has not been well-established, especially with the emerging rollout of vaccines globally. Here, we used random forest models to demonstrate that a single spike or receptor-binding domain (RBD) antibody was adequate for classifying prior infection, while a combination of two antibody biomarkers performed better than any single marker for estimating time-since-infection. Nucleocapsid antibodies performed worse than spike or RBD antibodies for classification, but is of utility for estimating time-since-infection, and in distinguishing infection-induced from vaccine-induced responses. Our analysis has the potential to inform the design of serosurveys for SARS-CoV-2, including decisions regarding number of antibody biomarkers measured.

12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.06.21263152

ABSTRACT

Background Genomic surveillance has shaped our understanding of SARS-CoV-2 variants, which have proliferated globally in 2021. Characterizing global genomic surveillance, sequencing coverage, the extent of publicly available genomic data coupled with traditional epidemiologic data can provide evidence to inform SARS-CoV-2 surveillance and control strategies. Methods We collected country-specific data on SARS-CoV-2 genomic surveillance, sequencing capabilities, public genomic data, and aggregated publicly available variant data. We divided countries into three levels of genomic surveillance and sequencing availability based on predefined criteria. We downloaded the merged and deduplicated SARS-CoV-2 sequences from multiple public repositories, and used different proxies to estimate the sequencing coverage and public availability extent of genomic data, in addition to describing the global dissemination of variants. Findings Since the start of 2021, the COVID-19 global epidemic clearly featured increasing circulation of Alpha, which was rapidly replaced by the Delta variant starting around May 2021 and reaching a global prevalence of 96.6% at the end of July 2021. SARS-CoV-2 genomic surveillance and sequencing availability varied markedly across countries, with 63 countries performing routine genomic surveillance and 79 countries with high availability of SARS-CoV-2 sequencing. Less than 3.5% of confirmed SARS-CoV-2 infections were sequenced globally since September 2020, with the lowest sequencing coverage in the WHO regions of Eastern Mediterranean, South East Asia, and Africa. Across different variants, 28-52% of countries with explicit reporting on variants shared less than half of their variant sequences in public repositories. More than 60% of demographic and 95% of clinical data were absent in GISAID metadata accompanying sequences. Interpretation Our findings indicated an urgent need to expand sequencing capacity of virus isolates, enhance the sharing of sequences, the standardization of metadata files, and supportive networks for countries with no sequencing capability. Research in context Evidence before this study On September 3, 2021, we searched PubMed for articles in any language published after January 1, 2020, using the following search terms: (“COVID-19” OR “SARS-CoV-2”) AND (“Global” OR “Region”) AND (“genomic surveillance” OR “sequencing” OR “spread”). Among 43 papers identified, few papers discussed the global diversity in genomic surveillance, sequencing, public availability of genomic data, as well as the global spread of SARS-CoV-2 variants. A paper from Furuse employed the publicly GISAID data to evaluate the SARS-CoV-2 sequencing effort by country from the perspectives of “fraction”, “timeliness”, and “openness”. Another viewpoint paper by Case Western Reserve University’s team discussed the impediments of genomic surveillance in several countries during the COVID-19 pandemic. The paper as reported by Campbell and colleagues used the GISAID data to present the global spread and estimated transmissibility of recently emerged SARS-CoV-2 variants. We also found several studies that reported the country-level genomic surveillance and spread of variants. To our knowledge, no research has quantitatively depicted the global SARS-CoV-2 genomic surveillance, sequencing ability, and public availability extent of genomic data. Added value of this study This study collected country-specific data on SARS-CoV-2 genomic surveillance, sequencing capabilities, public genomic data, and aggregated publicly available variant data as of 20 August 2021. We found that genomic surveillance strategies and sequencing availability is globally diverse. Less than 3.5% of confirmed SARS-CoV-2 infections were sequenced globally since September 2020. Our analysis of publicly deposited SARS-CoV-2 sequences and officially reported number of variants implied that the public availability extent of genomic data is low in some countries, and more than 60% of demographic and 95% of clinical data were absent in GISAID metadata accompanying sequences. We also described the pandemic dynamics shaped by VOCs. Implications of all the available evidence Our study provides a landscape for global sequencing coverage and public availability extent of sequences, as well as the evidence for rapid spread of SRAS-CoV-2 variants. The pervasive spread of Alpha and Delta variants further highlights the threat of SARS-CoV-2 mutations despite the availability of vaccines in many countries. It raised an urgent need to do more work on defining the ideal sampling schemes for different purposes (e.g., identifying new variants) with an additional call to share these data in public repositories to allow for further rapid scientific discovery.


Subject(s)
COVID-19 , Fractures, Open
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.26.21262699

ABSTRACT

The emergence of SARS-CoV-2 variants have raised concerns over the protective efficacy of the current generation of vaccines, and it remains unclear to what extent, if any, different variants impact the efficacy and effectiveness of various SARS-CoV-2 vaccines. We systematically searched for studies of SARS-CoV-2 vaccine efficacy and effectiveness, as well as neutralization data for variants, and used a previously published statistical model to predict vaccine efficacy against variants. Overall, we estimate the efficacy of mRNA-1273 and ChAdOx1 nCoV-19 against infection caused by the Delta variant to be 25-50% lower than that of prototype strains. The predicted efficacy against symptomatic illness of the mRNA vaccines BNT162b2 and mRNA-1273 are 95.1% (UI: 88.4-98.1%) and 80.8% (60.7-92.3%), respectively, which are higher than that of adenovirus-vector vaccines Ad26.COV2.S (44.8%, UI: 29.8-60.1%) and ChAdOx1 nCoV-19 (41.1%, 19.8-62.8%). Taken together, these results suggest that the development of more effective vaccine strategies against the Delta variant may be needed. Finally, the use of neutralizing antibody titers to predict efficacy against variants provides an additional tool for public health decision making, as new variants continue to emerge.

14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.03.21256506

ABSTRACT

Background Immunity after SARS-CoV-2 infection or vaccination has been threatened by recently emerged SARS-CoV-2 variants. A systematic summary of the landscape of neutralizing antibodies against emerging variants is needed. Methods We systematically searched PubMed, Embase, Web of Science, and 3 pre-print servers for studies that evaluated neutralizing antibodies titers induced by previous infection or vaccination against SARS-CoV-2 variants and comprehensively collected individual data. We calculated lineage-specific GMTs across different study participants and types of neutralization assays. Findings We identified 56 studies, including 2,483 individuals and 8,590 neutralization tests, meeting the eligibility criteria. Compared with lineage B, we estimate a 1.5-fold (95% CI: 1.0-2.2) reduction in neutralization against the B.1.1.7, 8.7-fold (95% CI: 6.5-11.7) reduction against B.1.351 and 5.0-fold (95% CI: 4.0-6.2) reduction against P.1. The estimated neutralization reductions for B.1.351 compared to lineage B were 240.2-fold (95% CI: 124.0-465.6) reduction for non-replicating vector platform, 4.6-fold (95% CI: 4.0-5.2) reduction for RNA platform, and 1.6-fold (95% CI: 1.2-2.1) reduction for protein subunit platform. The neutralizing antibodies induced by administration of inactivated vaccines and mRNA vaccines against lineage P.1 were also remarkably reduced by an average of 5.9-fold (95% CI: 3.7-9.3) and 1.5-fold (95% CI: 1.2-1.9). Interpretation Our findings indicate that the antibody response established by natural infection or vaccination might be able to effectively neutralize B.1.1.7, but neutralizing titers against B.1.351 and P.1 suffered large reductions. Standardized protocols for neutralization assays, as well as updating immune-based prevention and treatment, are needed. Funding Chinese National Science Fund for Distinguished Young Scholars Research in context Evidence before this study Several newly emerged SARS-CoV-2 variants have raised significant concerns globally, and there is concern that SARS-CoV-2 variants can evade immune responses that are based on the prototype strain. It is not known to what extent do emerging SARS-CoV-2 variants escape the immune response induced by previous infection or vaccination. However, existing studies of neutralizing potency against SARS-CoV-2 variants are based on limited numbers of samples and lack comparability between different laboratory methods. Furthermore, there are no studies providing whole picture of neutralizing antibodies induced by prior infections or vaccination against emerging variants. Therefore, we systematically reviewed and quantitively synthesized evidence on the degree to which antibodies from previous SARS-CoV-2 infection or vaccination effectively neutralize variants. Added value of this study In this study, 56 studies, including 2,483 individuals and 8,590 neutralization tests, were identified. Antibodies from natural infection or vaccination are likely to effectively neutralize B.1.1.7, but neutralizing titers against B.1.351 and P.1 suffered large reductions. Lineage B.1.351 escaped natural-infection-mediated neutralization the most, with GMT of 79.2 (95% CI: 68.5-91.6), while neutralizing antibody titers against the B.1.1.7 variant were largely preserved (254.6, 95% CI: 214.1-302.8). Compared with lineage B, we estimate a 1.5-fold (95% CI: 1.0-2.2) reduction in neutralization against the B.1.1.7, 8.7-fold (95% CI: 6.5-11.7) reduction against B.1.351 and 5.0-fold (95% CI: 4.0-6.2) reduction against P.1. The neutralizing antibody response after vaccinating with non-replicating vector vaccines against lineage B.1.351 was worse than responses elicited by vaccines on other platforms, with levels lower than that of individuals who were previously infected. The neutralizing antibodies induced by administration of inactivated vaccines and mRNA vaccines against lineage P.1 were also remarkably reduced by an average of 5.9-fold (95% CI: 3.7-9.3) and 1.5-fold (95% CI: 1.2-1.9). Implications of all the available evidence Our findings indicate that antibodies from natural infection of the parent lineage of SARS-CoV-2 or vaccination may be less able to neutralize some emerging variants, and antibody-based therapies may need to be updated. Furthermore, standardized protocols for neutralizing antibody testing against SARS-CoV-2 are needed to reduce lab-to-lab variations, thus facilitating comparability and interpretability across studies.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL